William W. Fisher III¹ and Talha Syed²

Infection: The Health Crisis in the Developing World and What We Should Do About It
(Stanford University Press, forthcoming 2017)

Chapter 1: The Diseases³

B. Bacterial Diseases

1. Tuberculosis

Tuberculosis (TB) is the first of the diseases in our catalogue that caused by bacteria. Today, the overwhelming majority of TB cases result from one species, mycobacterium tuberculosis, but a few cases result from other members of the same family: mycobacterium bovis (which was a more serious threat to humans prior to the widespread pasteurization of milk); mycobacterium africanum (which causes a substantial minority of the cases in West Africa);⁴ mycobacterium canetti (confined to the Horn of Africa); and mycobacterium microti (which sometimes occurs in HIV-positive persons).

The primary way in which the TB bacteria are transmitted is through the inhalation of water droplets suspended in air that has been contaminated by a cough or sneeze from someone with an active TB infection.⁵ A few of those droplets reach the alveoli in the person’s lungs, where the bacilli multiply; eventually, they spread to the lymph nodes and onward to other organs in the body.⁶ An immune response usually kills off most of the bacilli, leaving behind granulomas in the tissue.⁷ At this point, the person is said to be “infected,” but is asymptomatic.

The large majority of tuberculosis infections remain latent indefinitely. However, either because the initial infection overcomes the host’s immune system or because a secondary infection reactivates latent bacilli, some patients develop the disease commonly referred to as tuberculosis.⁸ Typically the disease causes most damage to the lungs, but it can injure almost any part of the body. Its principal internal manifestations are small white tubercles in tissues, scarring of the lobes of the lungs, and abnormal lung cavities. Common

¹ WilmerHale Professor of Intellectual Property Law, Harvard University.
² Assistant Professor of Law, University of California at Berkeley.
³ Version 1.0. Updated versions of this document (and of other portions of the book of which it is a part) will be posted periodically at http://cyber.law.harvard.edu/people/tfisher/Infection.htm.
⁴ See Bouke C. de Jong et al., "Differences between Tuberculosis Cases Infected with Mycobacterium Africanum, West African Type 2, Relative to Euro-American Mycobacterium Tuberculosis: An Update," FEMS Immunology & Medical Microbiology 58 (2010).
⁶ See id. at 7.
⁷ See id.
⁸ See id.
symptoms include chronic cough, fever, chills, night sweats, fatigue, and weight loss. If untreated, the disease leads to death within a decade more often than not.

The main treatment for active TB is a course of antibiotics. The drugs most commonly used are rifampicin and isoniazid. They are now often combined with two more: ethambutol and pyrazinamide. Unfortunately, TB bacteria are unusually hardy. As a result, an effective cure typically requires a sustained course of drugs – at least 6 months. Partly because of the duration of treatment and partly because the drugs have unpleasant side effects, some patients fail to complete the course conscientiously. Their lapses accelerate the development of drug-resistant strains of the bacteria in their bodies, which not only reduces their own responsiveness to antibiotics, but heightens the hazard that they pose to others. The “Directly Observed Therapy Short-course” (DOTS) (developed by the WHO), in which a health-care worker monitors each patient’s consumption of the antibiotics, is intended (among other things) to minimize such lapses, but its effectiveness in this particular respect is doubtful.

One of the most alarming recent developments involving TB is the proliferation of these resistant strains. “Multiple-drug-resistant TB” (MDR-TB) is unaffected by the two most common first-line antibiotics. It is curable – but only with a painful two-year regimen of toxic drugs that can have severe side effects. “Extensively-drug-resistant TB” (XDR-TB) is worse still; it is unaffected by a majority of the second-line drugs. Last but not least, “totally-drug-resistant TB” (TDR-TB) is unaffected by all known antibiotics. Roughly

10 For the set of antibiotics that the WHO deems “essential” in treating TB, see WHO, "Model List of Essential Medicines," (2013), 9-10.

13 This is the most widely accepted explanation for the emergence of drug resistance in TB. Some scientists, however, contend the causes are more complex. See Keertan Dheda et al., "Global Control of Tuberculosis: From Extensively Drug-Resistant to Untreatable Tuberculosis," Lancet Respiratory Medicine 2 (2014): 324ff.

3.5% of all new cases of active TB now take one of these three drug-resistant forms. The most dangerous variant, TDR-TB, has been documented in Italy, India, Iran, and South Africa.20

Another alarming development is the synergy of TB and HIV. An HIV infection, by degrading the person’s immune system, sharply increases the likelihood that a TB infection that the person already has or later acquires will become active. To reduce this probability, HIV-positive persons can and should be given prophylactic doses of isoniazid.

A vaccine for TB does exist. Commonly known as BCG (after its developers, Albert Calmette and Camille Guérin), it is based on a strain of Mycobacterium bovis that was attenuated a century ago.21 It is currently administered to approximately 100 million persons a year.22 BCG has proven to be highly effective in preventing TB infection during childhood.23 Unfortunately, it is much less effective in preventing pulmonary TB in adults.24 A number of hypotheses have been suggested to explain this phenomenon. Some scientists contend that the protection induced by BCG wanes over time.25 Others believe that variation in the strains of the TB virus accounts for the differences in protection afforded by the vaccine.26 The most popular explanation, however, is that an individual’s active immune response to non-pathogenic organisms may inhibit the in vivo replication of the BCG vaccine required for its protective effect.27 Whatever the reason, BCG provides adults only imperfect shields against the disease.

Unlike HIV, which first passed from non-human primates to humans sometime in the twentieth century, TB has afflicted humans for thousands of years. By 1800, it was extremely common, especially among the urban poor. During the nineteenth century, roughly one quarter of all deaths in Europe resulted from TB.28 Public-health initiatives designed to reduce transmission rates, combined with the increasingly widespread deployment of the BCG vaccine and antibiotics, sharply reduced both its prevalence and its mortality rate – and gave rise to hope that, like smallpox, TB might be eradicated altogether.

24 See supra Brennan at 7.

25 See supra Doherty at 818.

26 See supra Brennan at 10. Alternatively, the differences may be caused by methodological differences in dosage and delivery. See id.

27 See S.G. Reed et al., Prospects for a better vaccine against tuberculosis, TUBERCULOSIS, Vol. 83 at 214 (2003). This explanation has been labeled the Koch phenomenon and is based on the idea that the antigens being regulated by the immune response actually trigger the “necrosis of pre-existing tubercle foci, release of organisms previously walled-off within this granuloma, spread of infection and increasing pulmonary destruction.” Id.

28 See Barry R. Bloom, ed., Tuberculosis: Pathogenesis, Protection and Control (1994).*
Optimism on this score has now dissipated, in part because of the emergence of the drug-resistant strains and in part because of the spread of the HIV virus, which (as indicated above) has increased the frequency with which latent TB infections become active and thus contagious.

Today, roughly one third of the world’s population is infected with one of the tuberculosis viruses. Roughly 9 million people develop the active form of disease each year, and 1.5 million die from it. 1.1 million (12%) of the new active cases are of HIV-positive people, and 360,000 (24%) of the deaths result from the interaction of TB and HIV. Figures 2 and 3, below, show the geographic distribution, as of 2013, of new TB infections and of TB mortality rates (excluding the deaths related to HIV).

Figure 2

Estimated TB incidence rates, 2013

31 See "Global Tb Report.", 29.

32 The source for both figures is ibid., pp. 34, 39. The maps can be found online at http://gamapserver.who.int/mapLibrary/Files/Maps/Global_TBincidence_2013.png and http://gamapserver.who.int/mapLibrary/Files/Maps/Global_TB_MortalityRates_HIVpositive_2013.png.
The high levels both of new infections and of deaths in sub-Saharan Africa that loom large in these maps resemble the levels associated with HIV. In other respects, however, the geographic distribution of TB is different from that of HIV. In particular, TB currently threatens more severely the population of Asia. (In 2013, 24% of all new TB cases were in India, and 11% were in China.33)

If successful, two lines of research would go far to curbing the scourge of TB. First, efforts are currently underway to develop new antibiotics capable of combatting the drug-resistant forms of the disease.34 Two (bedaquiline and delamanid) have recently been approved; ten more are being tested.35 Second, various projects are seeking to develop a

33 See ibid., p. 13, 24.
34 See "Drug-Resistant Tb.", pp. ____.
vaccine that would either be more effective than BCG or would boost the effectiveness of BCG in adults. Currently, at least a dozen candidates are in clinical trials.

These initiatives are reasonably well funded. Together the NIH, the European Commission, the Gates Foundation, and the Global Alliance for TB Drug Development invest in them more than US$500 million per year. Many pharmaceutical companies and research centers are participating. Thus far, however, the fruits have been disappointing. Although the recently approved drugs and some of those nearing the end of the pipeline offer modest improvements over the existing set of antibiotics, no breakthrough drugs have yet emerged. And, although some of the vaccine candidates have been shown to be safe, none has yet been demonstrated to be effective.

In part, this discouraging result simply reflects the difficulty of the tasks. Finding new safe and effective antibiotics and vaccines of any sort is hard. The projects focused on new TB vaccines face especially high hurdles. Perhaps the most serious is the length of time it takes to test candidates. Because the peak incidence of TB infection occurs in adulthood, and vaccination is typically performed upon infants, clinical trials for new drugs may not generate results until decades after they begin. Even the clinical trials for booster vaccines typically span 8-10 years. A limited clinical-testing and manufacturing infrastructure also contributes to slow development of viable TB vaccines. Working with the live pathogens used in attenuated *M. tuberculosis* or recombinant BCG vaccines requires biohazard-level-3

36 The two leading candidates for a novel vaccine are recombinant BCG and modified attenuated *M. tuberculosis*. See T. Mark Doherty, *New Vaccines Against Tuberculosis*, TROPICAL MEDICINE AND INTERNATIONAL HEALTH, Vol. 9, No. 7 at 821. Recombinant BCG should theoretically reduce the problem of waning effectiveness over time. See id. Modified attenuated strains of *M. tuberculosis* should mimic the disease-causing bacteria more effectively than modified BCG because BCG is based upon a bovine strain of the TB causing bacteria. See S.G. Reed et al., *Prospects for a better vaccine against tuberculosis*, TUBERCULOSIS Vol. 83 at 214 (2003). However, such a vaccine needs to be tested extensively prior to clinical trials to ensure that a return to virulence is not possible.

37 The concept behind boosting vaccines is that an adjuvated protein vaccine can stimulate BCG into providing immunity later in life, when the vaccine has been demonstrated to become ineffective. See T. Mark Doherty, *New Vaccines Against Tuberculosis*, TROPICAL MEDICINE AND INTERNATIONAL HEALTH, Vol. 9, No. 7 at 821. The first phase I human study of a booster TB vaccine began recently, studying the effect of a modified vaccinia virus Ankara expressing Antigen 85 of *M. tuberculosis*. See Michael J. Brennan, *The Tuberculosis Vaccine Challenge*, TUBERCULOSIS Vol. 85 at 10 (2005). Two more boosting vaccines will enter human trials in the near future: a Hybrid1 vaccine by the Statens Serum Institute in Denmark and a 72f vaccine from GlaxoSmithKline. See supra Doherty at 821. The Statens Serum Institute vaccine is a fusion of ESAT-6 and Ag85B and is scheduled to enter human trials in 2005. See id.

39 For a list, see ibid., 183.

41 See Xing, Jeyanathan, and Smaill, "New Approaches to Tb Vaccination."

42 See supra Doherty at 824.

43 See id.

44 See supra Brennan at 11.
facilities.45 Not only are such facilities rare and extremely costly to build, they would need to be large enough to produce the vaccine in quantities sufficient for large-scale Phase III human trials and distribution to the subsequent target populations.46

Other impediments to drug development, however, are more tractable. The many projects currently underway in various countries are poorly coordinated and rarely share information; the result is needless redundancy in research.47 Equally important, many projects seem to be languishing in the so-called “valley of death” – the gap between demonstration of promise and satisfaction of the requirements for FDA approval. At least in principle, both obstacles could be removed: the first through more openness and better coordination, the second with money.

In the meantime, the fight against TB must rely on a combination of public-health initiatives (to curtail transmissions) and administration of the existing antibiotics to the patients who are infected by bacteria strains for which those drugs are effective. The latter strategy, however, is hobbled by the high cost in many countries of some of those antibiotics -- in particular the newer drugs that must be deployed to address MDR-TB and XDR-TB. The prices of those drugs contribute importantly to the distressingly high cost and limited availability of treatments for the disease-resistant strains. Whereas the average cost per patient of treating ordinary TB is between US$100 and US$500 in most countries, the average cost per patient of treating MDR-TB is roughly US$9,235 in low-income countries (and five times that amount in upper middle income countries).48 That cost, plus limitations on funding for MDR-TB programs, has had a predictable result: Although 97,000 patients worldwide began treatment for MDR-TB in 2013, 39,000 persons (most of them in poor countries) suffering from the disease remained on waiting lists.49 Even larger numbers either have not yet been diagnosed or have been diagnosed but are not yet on waiting lists.

Meanwhile, new varieties of drug-resistant TB continue to proliferate,50 and the threat they pose to public health intensifies. In 2013, there were 480,000 new cases of MDR-TB, and 210,000 people died from it.51 Globally, the percentage of diagnosed TB cases that involve drug resistant varieties has not changed in recent years. However, unusually high rates of drug resistance in some countries (especially Russia and in eastern Europe52) and the apparent proliferation of varieties that are resistant to all drugs are causes for alarm.

45 See id. at 8.
46 See id.
47 See Eakins and Williams, "Curing Tb with Open Science," 184.
48 See WHO, "Global Tb Report.,” 15.
49 See ibid., p. 14.
50 For a map showing the global distribution of the genotypes that have been identified thus far, see Dheda et al., "Global Control of Tuberculosis: From Extensively Drug-Resistant to Untreatable Tuberculosis," 322.
52 In Russia, 19% of new TB cases and 49% of retreatment cases are drug resistant. In Belarus, the numbers are 35% and 55%; in Kyrgyzstan, 26% and 55%. See ibid., 73.
References

