There is great optimism over the potential for information and communication technologies (ICTs) to promote economic development and alleviate poverty. Currently, however, there is neither a solid theoretical basis nor convincing empirical evidence to support such optimism. This chapter identifies the economic underpinnings of the argument for a significant role for ICTs in the development process. The basic premise is that information and communication are valuable commodities that can enhance the functioning of markets critical for the well-being of the poor. Recent advances in ICTs can bring these benefits to even the poorest of the poor in the developing world.

This chapter is organized as follows. We begin with a theoretical discussion of markets and economic efficiency, highlighting the desirable outcomes that result from well-functioning markets. Next, we discuss the critical role of information in generating efficient market outcomes. We then examine the extent of information flow, or lack thereof, in developing countries and the consequences for market functioning. In doing so, we pay particular attention to the benefits well-functioning markets bring to even the poorest persons in the poorest nations. Finally, we evaluate the limited evidence to date on how bringing ICTs to information-isolated communities can promote welfare, and provide new evidence based on an analysis of household data from China.

Markets and Economic Efficiency

What markets are and what they do

In the broadest sense, an economy is a group of individuals (consumers) who need or want various things, such as different kinds of food, clothing, shelter, or entertainment. The most important task, and the biggest challenge, for an economy is to take its limited resources—land, labor, capital, natural resources—and convert them into the things people want. This problem, which is fundamentally how to allocate resources to match production with consumption desires, is the core of economics. Markets are the key instruments with which to meet this challenge.

Markets are a set of transactions by agents over a range of goods and services. Such transactions allow for mutually beneficial exchange. Taken at this fundamental level, markets perform the
important task of freeing individuals from self-reliance. In a modern economy, all economic activity, from the production and sales decisions of the smallest farmer to those of the largest corporation, rely on markets.

When markets perform well, consumption desires guide the production of all participants. Under these conditions the economy is said to be performing efficiently, meaning that there is no opportunity to make one person better off without making another worse off. This implies, for example, that there is no scope for readjusting production to produce more X and less Y, assuming consumers would value the gained X more than the lost Y. In other words, efficiency assures that resources are deployed to their highest value purposes.

The role of information in market coordination and efficiency

The coordination problem involved in allocating resources to their best uses is enormous. How can millions of independent, dispersed consumers communicate to millions of independent, dispersed producers exactly how much of each of the enormous variety of goods and services they want? Similarly, how do producers know how they can make the most money, usually without ever meeting more than a fraction of the people who buy their products? How do they know to supply the exact combination of goods that consumers want to buy, so that collectively there is not too much bread and too little clothing, or too much rice and too few onions? Prices, and market signals more generally, are the key instruments that facilitate this coordination.

In a market-based economy, prices transmit all of the information that participants in the economy require to make effective decisions. Producers need to know the prices of inputs they must buy and the prices of the outputs they wish to sell in order to decide what and how to produce. Consumers need to know the prices of the goods and services they might buy, and the going rate for their labor skills and other services they wish to sell, so that they can make appropriate decisions about household consumption and labor force participation. On both the production and consumption sides, market prices act as coordinating signals.

In the classic textbook version of a market-based economy, the price of a good will rise when many people value that good more than its current price. As consumers compete to buy the good, they will bid the price higher. Producers respond to the higher price by supplying more of the good. Thus, in a well-functioning economy, when there aren’t enough eggs to meet demand (in a given region), the price of eggs increases, and farmers, seeing opportunities for profit, breed more hens to produce more eggs. People want more eggs and, like magic, more eggs appear. Consumers and producers react to the evolution of prices through multiple iterations of this sequence. When quantity demanded at a given price just balances the quantity that producers want to supply at that price, the market reaches equilibrium. Whether Wall Street or West Africa, information makes markets work.

When markets do work, consumers benefit alongside producers. Only a consumer whose value for the good exceeds, or at least equals, the going market price will end up buying it. Therefore, in market-based economies, those who want a good the most ultimately get it. This allocation process might seem to disadvantage the poor, but that is not the case. Even the poor get staples, such as food, because staples are cheap to provide, and the rich want only limited amounts of such goods. The market allocates scarce resources in a way that fosters the welfare of both rich and poor.

The challenge of providing information

How challenging is the task of providing the information that enables markets to work? Little information would be required if prices stayed relatively constant from year to year. Farmers would know what to plant, laborers would know where to work, consumers would know what to pay for goods and farmers for inputs, just by relying on prices from the previous period. However, even in relatively underdeveloped economies, prices move considerably in response to such forces as weather, changes in taste and technology, and variation in supply and demand from outside the region.

Might there be alternatives to market signals for coordinating production and consumption? The multidecade experience of centrally planned economies (e.g., the pre-1990 nations of Eastern Europe and the former Soviet Union), the most ambitious experiment to supersede the traditional role of prices, indicates not. Severe coordination failures proved to be unavoidable when prices were not used to coordinate economic activities. Rather than let producers and consumers communicate through prices, the governments in these economies set prices administratively and directly allocated inputs and output quotas to manage the economy. The amount of information needed to ensure that the production of every good and service even roughly matched the desires of consumers could not be achieved. Often production was grossly inconsistent with demand at the prices set. The result was that many goods that consumers wanted either could not be found or were available only by waiting in long queues, whereas many other goods were badly oversupplied, and sat unwanted on shelves. Further, because prices and production activities were set by planners, the opportunity for corruption or the prospect of private financial and political gains to guide decision making, rather than efficiency, was great. Experience with socialism underscores the great advantage of markets as coordinators of producers and consumers.
survey in Peru showed that 77.2 percent of households lacked telephones, including 99.8 percent of poor rural households (Torero, 2000:11). With no way to communicate across distances, many rural poor are removed from the flow of information required to make markets work. In particular, price signals are faint or absent.

A vivid symptom of poor information flow is that prices vary widely within a geographic area, even for goods that are readily transported. A few empirical studies document the spatial dispersion of prices and how effectively or ineffectively price information is transmitted across markets. For example, Badiane and Shively (1998) studied monthly maize prices in Ghana from 1980 to 1993 and found that “the estimated time to fully transmit a price shock [from the central market to each of two outlying markets] is about four months.” Price adjustments may also be asymmetric; in Ghana, wholesale maize prices for producers in local markets respond more swiftly to increases than decreases in central market prices (Abdulai 2000).

Not surprisingly, therefore, many studies have shown that market integration fails for important products in a variety of countries. Examples include rice in Bangladesh (Ravallion 1986), rice, sorghum, and oil in India (Palaskas et al. 1997), grains in Nigeria (Delgado 1986; Heytens 1986), livestock in Niger (Fafchamps and Gavian 1997), and rice in China (Zhou et al. 2000).

We can examine these issues further using the interesting case of rural China. Despite decades of urban growth, China remains largely a rural country; over two-thirds of the population resides in rural areas, and nearly three-quarters of employed men and women are engaged in the agricultural sector. To explore the nature of market efficiency and price dispersion, as well as to later show the potential role of ICTs for promoting income growth among the poor, we make use of household- and

Table 1: Access to Telecommunications in 2000, by World Region

<table>
<thead>
<tr>
<th>Region</th>
<th>Mobile Telephones (per 1,000 people)</th>
<th>Radios (per 1,000 people)</th>
<th>Telephone Mainlines (per 1,000 people)</th>
<th>Waiting Time for Telephones (years)</th>
<th>Television Sets (per 1,000 people)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Income</td>
<td>6.0</td>
<td>157.3</td>
<td>17.6</td>
<td>5.9</td>
<td>85.5</td>
</tr>
<tr>
<td>Middle Income</td>
<td>90.0</td>
<td>359.4</td>
<td>153.2</td>
<td>1.1</td>
<td>279.2</td>
</tr>
<tr>
<td>High Income</td>
<td>615.3</td>
<td>1288.5</td>
<td>557.2</td>
<td>0.0</td>
<td>692.8</td>
</tr>
<tr>
<td>East Asia/Pacific</td>
<td>179.5</td>
<td>302.3</td>
<td>200.6</td>
<td>1.2</td>
<td>252.5</td>
</tr>
<tr>
<td>South Asia</td>
<td>7.5</td>
<td>112.7</td>
<td>27.8</td>
<td>1.6</td>
<td>71.0</td>
</tr>
<tr>
<td>Sub-Saharan Africa</td>
<td>27.7</td>
<td>201.5</td>
<td>24.4</td>
<td>6.0</td>
<td>43.2</td>
</tr>
<tr>
<td>Europe/Central Asia</td>
<td>329.5</td>
<td>446.0</td>
<td>323.5</td>
<td>2.0</td>
<td>369.6</td>
</tr>
<tr>
<td>Latin America/Caribbean</td>
<td>88.7</td>
<td>418.6</td>
<td>241.9</td>
<td>0.5</td>
<td>271.8</td>
</tr>
<tr>
<td>World</td>
<td>156.7</td>
<td>420.1</td>
<td>202.5</td>
<td>1.4</td>
<td>268.3</td>
</tr>
</tbody>
</table>

The data on mobile telephones and telephone mainlines are for 2000, based on authors’ calculations from International Telecommunications Union (October 2001 update) using regional fixed factors from Easterly and Sewadeh (2001). The data for radios, waiting times for telephone mainlines, and television sets are for 1999 as reported in the World Bank World Development Indicator Database (available at www.worldbank.org).
price dispersion. In every case illustrated, the highest price is at least two times greater than the lowest price. Such gaps in price greatly exceed possible transport costs for the commodities (for which some data in the CHNS are available). These results roughly indicate how far these markets are from being integrated, which implies severe underlying inefficiencies.

There may be other factors that could explain why a given village would have a high price for commodity A or a low one for commodity B. For example, if the village imported A and exported B and residents were being exploited by middlemen, price dispersion would also arise. Therefore, to test for integration, we must look further. With integration, even if there is exploitation or transport costs are steep, prices for these commodities in the village would tend to move in concert with urban prices. Thus, finding that prices move in different directions across different areas (i.e., the price for a given good is rising in one area while falling in another) would indicate poor integration. Figure 1 shows the prices of pork, vegetables, eggs and fish in 1989 and 1993 graphically, the horizontal axis representing the price in 1989 and the vertical axis the price in 1993. The 45-degree line represents the set of points where (deflated) prices are equal in both years. Prices move substantially over this time for all of these commodities. Tracing up from any given price in 1989, there are cases where the price goes up in many villages and down in many others. Prices are not moving in tandem across areas.

Table 2: Prices (per kg) of Various Commodities in Chinese Villages, 1991

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Highest</th>
<th>Lowest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish</td>
<td>6.5</td>
<td>2.0</td>
<td>14.1</td>
<td>5.2</td>
</tr>
<tr>
<td>Pork</td>
<td>5.9</td>
<td>1.4</td>
<td>8.0</td>
<td>3.8</td>
</tr>
<tr>
<td>Eggs</td>
<td>4.6</td>
<td>1.5</td>
<td>7.0</td>
<td>1.9</td>
</tr>
<tr>
<td>Vegetables</td>
<td>0.64</td>
<td>0.61</td>
<td>4.5</td>
<td>0.35</td>
</tr>
</tbody>
</table>

The table reveals that that the Law of One Price is strongly violated. For most commodities, the standard deviations are quite large relative to the means, indicating a great deal of village-level data from the China Health and Nutrition Survey (CHNS). The CHNS is a stratified random sample of thirty-eight hundred households across two hundred villages in China. In addition to information on employment, income, and expenditures, the survey gathered information on the market prices at which various goods can be purchased, for each village in which the survey was conducted. Table 2 provides data on the distribution of prices across areas in 1991 for several of the most commonly consumed foods. Columns one through four respectively show the means, standard deviations, and highest and lowest prices recorded (in RMB yuan) across the villages sampled in the survey.

Figure 1: Price Changes Across Chinese Villages, 1989–1993
estimates of the densities of the prices of pork, vegetables, eggs, and fish.

Of course, there may be other differences between villages with and without telephones that may also influence prices and market performance. For example, villages with telephones may be closer to cities and have better access to roads or lower transportation costs. The CHNS data provide information on such factors, which do in fact differ slightly across villages. However, even after statistically controlling for these various differences, we still conclude that the means and standard deviations are lower in the villages with telephones. Further, since the CHNS visited the same villages in several rounds over the course of eight years, we can examine the change in prices, and change in price variance, for villages that added telephones.

Several striking features are apparent in this table. For three of the commodities, the mean price is lower in villages with telephones. In villages lacking telephones, as the “information promotes market integration” theory would predict, the standard deviation is much higher for all the goods. So, too, is the spread between the highest and lowest prices. The greater price dispersion can be seen more clearly in Figure 2, which shows

Table 3: Prices (per kilo) of Various Commodities, Telephone vs. No Telephone

<table>
<thead>
<tr>
<th>Commodity</th>
<th>WITH TELEPHONE</th>
<th>WITH TELEPHONE</th>
<th>WITHOUT TELEPHONE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Standard Deviation</td>
<td>Highest</td>
</tr>
<tr>
<td>Fish</td>
<td>6.2</td>
<td>1.8</td>
<td>9.0</td>
</tr>
<tr>
<td>Pork</td>
<td>5.8</td>
<td>0.71</td>
<td>7.0</td>
</tr>
<tr>
<td>Eggs</td>
<td>4.3</td>
<td>1.2</td>
<td>7.0</td>
</tr>
<tr>
<td>Vegetables</td>
<td>0.64</td>
<td>0.50</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Our guiding premise suggests that price dispersion will be diminished by the presence of communications infrastructure. Greater information flows should reduce the variation in prices; as markets become more integrated, trade should push toward price equalization. Telephones offer a very basic means to communicate prices. Table 3 provides the same information as Table 2, but is disaggregated by whether the village has a telephone.

Figure 2: Densities of Prices

A graph showing the densities of prices for pork, eggs, vegetables, and fish, with and without telephones.
Another possibility is that middlemen or dealers will enter the picture. As Geertz (1978:30) pointed out, one of the most common responses to high search costs due to poor information is “clientelization,” to establish long-term trading relationships. Although trust may develop over multiple transactions, the paucity of information continues to handicap the farmer since he cannot independently assess the integrity of the dealer, or the reasonableness of the prices he offers, by comparing purchase prices across many markets and many dealers. The fourth purpose of price information for farmers is to prevent their exploitation by middlemen, a matter we take up below.

Production given price uncertainty

We are not suggesting that price information never arrives at the isolated village, just that it arrives when it may no longer be accurate or relevant. Consider a farmer in an uncertain world; he knows prices on average, but not the actual price at the time he must make production decisions. Even if he produces only a single crop and ultimately gets the market price, he will produce the wrong amount. The curve labeled \(S \) (Figure 3) is a supply curve, telling how much the farmer can produce at any price. The curve slopes upward because beyond some minimum, each extra unit of output costs more in terms of hired labor, fertilizer, better seeds, and so on. The farmer knows that the likelihood that the price is high is 50 percent, and that it is 50 percent likely to be low. If he does not know the price, the best he can do is assume the average (medium) price. He will produce amount \(Q_M \). (The subscripts \(H, M \) and \(L \) refer to high, medium, and low.) If he knew the prices, he would produce \(Q_H \) if they were high and \(Q_L \) if they were low. As opposed to producing \(Q_M \), he would earn more than he was before—the amount indicated by area \(A \)—if the price was high,

![Figure 3: A Farmer’s Loss from Price Uncertainty](image-url)
and would avoid losing area B if the price was low (when he incurs production costs above the price). On average, the farmer would be \((A+B)/2\) ahead if he knew prices before making production decisions.\(^7\) To be fair, even farmers in the information-suffused environments of developed nations do not know ultimate sale prices before they produce, but price projections and futures markets usually give them a reasonable idea. Further, the absence of futures markets is in itself an indication of the weak flow of information in developing countries, and the potential benefit better information flows could bring.

Laborers and markets

Landless laborers, who together with farmers comprise the overwhelming majority of the population of poor rural areas, are hurt in a somewhat different fashion when price information and effective markets are not available. Their productivity suffers, since they often stand around waiting for work. In rural villages, and in neighboring urban areas with informal sectors that draw workers from villages, most employers’ labor needs are unpredictable and vary greatly from day to day. Hence, permanent employment relationships are rare. For example, Breman (1996) studies the informal economy in a region of India. He reports that about half the workforce is employed under daily contracts, with little vertical mobility into semipermanent and permanent jobs.

Given this reliance of landless laborers on day-to-day job opportunities, lack of information can severely constrain income opportunities. Often, hours are wasted searching for brief employment opportunities, or worse, workers in one village may stand idle while employers in nearby villages or slightly further removed urban areas are unable to find enough workers. Better coordination would mean that there would be many fewer idle workers and wasted opportunities.

Middlemen: too many, or too few?

Middlemen often act as intermediaries between agents (e.g., between farmers and consumers, or even between laborers and employers in a distant locale). Middlemen may travel from cities to villages to purchase crops and sell inputs, or they may just have an outpost in a town market. Anecdote and speculation around the ways ICTs can help the poor have frequently involved discussions of the role of middlemen. The common perception is that middlemen gouge both buyers and sellers and that ICTs can therefore help farmers, either by improving their bargaining position or by enabling direct sales, remove the middlemen.\(^8\)

However, the presence of middlemen is not necessarily a symbol of an information-starved market. Even in advanced economies, middlemen, wholesalers, and retailers play a major role by performing many valuable tasks of intermediation (e.g., sorting for and attesting to quality, storing and transporting goods, organizing sales, assuming or pooling risk, or supplying credit (Li 1998; Van Raalte and Webers 1998; Biglaiser 1993; Stigler 1961). It would be highly inefficient for rural farmers to assume all of these tasks; rather, they should focus on what they do best, namely produce agricultural commodities. Theoretical work confirms that under most circumstances, the optimal amount of intermediation is positive (e.g., Biglaiser 1993). For example, in a model with endogenous middlemen (who invest in quality-verifying technology), even though the middlemen are not engaged directly in production, when “people do not execute trades because they cannot recognize the true quality to goods, expert middlemen can improve welfare.” (Li 1998)

The big difference between middlemen for an isolated farmer in the developing world and, say, producers in Europe, is that the European middlemen face competition that assures that they get an appropriate (but not excessive) price for their services. In information-isolated settings, the problem with middlemen is often not that there are too many of them, but too few. Middlemen can only price gouge if they have few or no competitors. If a farmer has many traders or middlemen available, no one can exploit him by paying inadequate prices for his crops or charging too much for farm inputs or consumption goods. If one middleman refuses to pay a reasonable price, a farmer can follow the strategy of the European producer and refuse to sell to him, instead marketing to another middleman who pays a better price. Similarly, if a middleman demands too much for inputs sold to farmers, another middleman can lure away his customers by offering more favorable prices. Competition among middlemen constrains their ability to exploit information asymmetry in order to reap excessive profits. Middlemen often have a monopoly because of well-developed relationships or the high costs of search and information. If information were available through ICTs, however, even if it were merely the identity of farmers and middlemen, it would be easier for others to enter the market as traders or middlemen and thus increase competition.

Many studies find that competition among middlemen constrains the exploitation of customers. For example, Hayami et al. (1999) report data from a survey indicating that rice marketing in the Philippines (at least in the area studied) is highly competitive, preventing middlemen from exploiting peasants and consumers through monopoly/monopsony pricing. The authors estimate that 50 to 70 percent of the consumer price goes to farmers, with the remaining 30 to 50 percent marketing margin split among collectors/middlemen (about 5 percent), rice mills (15 percent), and retailers (10 percent). In other countries, such as the former Zaire, producers receive only 35 to 41 percent of the wholesale price of several main commodities, although transportation costs account for most of the balance of the price (Minten and Kyle 1999). Middlemen operating in areas of the Brazilian Amazon rain-forest receive 40 to 50 percent of the final prices of fruit and vegetables (Roberts 1995). Some socialist countries such as
Maioist China illustrate the impact of a monopoly middleman, the government. By imposing a “price scissors” on farmers—paying a lower-than-market price for agricultural output and charging a higher-than-market price for nonagricultural goods—the Chinese government raised implicit tax revenues. Imai (2000) estimates the real income loss for farmers to have been equivalent to a 16.7 percent labor income tax during the 1964 to 1978 period.

Information and productivity

Making information available, including information other than price, can enhance production in isolated villages in other ways. At the most basic level, the ability to monitor weather expectations could enable farmers to plant and harvest at appropriate times. It may also allow important information flow in the opposite direction. For example, a greater flow of information could allow farmers to gain trust and build reputations, which could enhance the functioning of credit markets. Information flows and monitoring by creditors could help farmers receive access to loans and other financial resources, which in turn could enable them to implement new production technologies.

Over the long run, one of the significant gains from information may come through the transformation of production processes. New technologies diffuse slowly in developing nations, often passing from producer to producer by word of mouth. Effective markets change this pattern, and create a world where information flows in all directions. For example, sellers of inputs, attentive to the possibility of new sales, learn about farmers’ practices. They then purvey products, and sometimes call for new products, that boost agricultural productivity. At the same time, farmers scan the market to learn about potentially more profitable crops or new farming techniques. Thus, better information flows could promote technological adoption and innovation.

Overall, then, it is possible that basic information and communication technologies could provide a higher path of income growth, not just a one-time income gain. This optimistic prediction has empirical support. Research shows that productivity flows from the development of marketplace infrastructure and integration. Studying developing countries, Antle (1983) shows that poor transportation and communication infrastructure constrains agricultural productivity. When markets function well, trade is abundant, and farmers reap the rewards of specialization (e.g., producing a profitable cash crop rather than growing the main crop and others for their own subsistence). Additional gains from specialization include developing product-particular skills and knowledge, purchasing inputs in bulk, or reaching economies of scale. A whole region or economy benefits when improved information flow leads to more integrated markets that widely disseminate new techniques, fertilizers, and other inputs to agricultural production.

Evidence on the Transformative Role of Information Technology

We have argued that integrated markets can significantly help the rural poor of developing nations, and that ICTs, even basic communications technologies, can play a major role in creating such markets. Moreover, we have posited that ICTs have the potential not just to provide a one-time lift to income in poor regions, but to accelerate the entire growth process by generally making it easier for isolated producers to improve their practices in effect, ICTs speed innovation. What can we learn from the historical record?

Evidence on the impact of ICTs on economic growth mostly comes from study of high-income countries. Early studies, such as Hardy’s (1980) examination of the role of the telephone in economic development, although pioneering and suggestive, are nevertheless plagued by problems of reverse causality. In other words, does a positive correlation between improved ICTs and economic growth reveal that (1) ICTs bolster growth, or that (2) growth nourishes improved ICTs, or does it suggest both? Several researchers have attempted to disentangle these effects (e.g., Greenstein and Spiller 1996; Norton 1992). In a careful recent study, Röller and Waverman (2001) analyze twenty-one OECD countries over twenty years, finding evidence of a significant positive causal link between telecommunications infrastructure and economic growth.

Evidence on how advances in and the spread of ICTs spurred economic development in nineteenth century America is perhaps more germane to the world’s poor today. Garbade and Silber (1978) find strong statistical support for the hypothesis that two innovations in communications technology—the telegraph (1840s) and trans-Atlantic cable (1866)—led to significant and rapid narrowing of intermarket price differentials. Du Boff (1980) chronicles the growth of the telegraph in the United States from the mid-1840s to 1860. In 1840, 63 percent of the American labor force worked on farms and only 9 percent in manufacturing, much like many developing countries today. After initial skepticism regarding the new communications technology, the telegraph industry grew dramatically as the railroads, the press, and other businesses and consumers began to capitalize on the advantages of instantaneous communication. Consistent with our argument on the high value on market integration through the flow of price signals, Du Boff reports that among the earliest and highest volume telegraph dispatches were communications of market prices in different areas to press outlets for wider dissemination. For example, a Pittsburgh newspaper in January 1848 announced “the lightning brought us quite a budget of news last night,” listing the “going prices for cotton, flour, breadstuffs, wheat, rye, pork, southern oats; money market conditions in England; and railroad service connections for freight shipments”; “other newspapers in ‘Telegraph Dispatches’ showed the same
women, who essentially provide a village pay phone. According to one study (Bayes et al. 1999), close to half of all telephone calls involved economic purposes such as discussing market prices of commodities, employment opportunities, land transactions, remittances, and other business items. Bayes et al. also noted that, moreover, “the average prices of agricultural commodities (especially [rice] paddy and eggs) were higher in target villages (with phones) than in control villages (without phones).” Vegetable growers said that access to telephones helped them to make more appropriate production decisions, and users of agricultural inputs benefited from a smoother and more reliable supply. Better information also improved some sellers’ perception of their bargaining position vis-à-vis middlemen. Finally, village telephones facilitated job searches, access to emergency medical care and the ability to deal with natural disasters, lowered mortality rates for livestock thanks to more timely advice from extension workers, and improved rates in foreign-exchange transactions.

Additional evidence on the effects of basic communications technologies can be obtained from an analysis of the CHNS data for China. During the period of market-oriented economic reforms covered by the survey, telephone service was expanded throughout rural areas in China. In 1991, approximately 40 percent of rural villages in the survey had telephones. By 1993, however, that fraction had increased to more than 60 percent. The household survey gathered information on a variety of economic activities, including agriculture (output and sales prices), wage labor (i.e., wage or salary received, and time worked in hours per day, days per month, months per year), and household businesses/enterprises. The hypotheses developed above predict that as information flows better and markets become more integrated, farmers or enterprise owners might, for example, receive more for their output or sell more output, and hours worked may increase due to better coordination of labor. We followed households over time to see what happened to incomes when villages add telephones. Villages that did not get telephones are the comparison group. Table 4 provides data on income for households from various sources.

Table 4: Sources of Income

<table>
<thead>
<tr>
<th></th>
<th>NO TELEPHONE 1991</th>
<th>NO TELEPHONE 1993</th>
<th>NO TELEPHONE 1991</th>
<th>NO TELEPHONE 1993</th>
<th>NO TELEPHONE 1991</th>
<th>NO TELEPHONE 1993</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1991</td>
<td>1993</td>
<td>% Change</td>
<td>1991</td>
<td>1993</td>
<td>% Change</td>
</tr>
<tr>
<td>Income from wages</td>
<td>326</td>
<td>342</td>
<td>.05</td>
<td>366</td>
<td>394</td>
<td>.08</td>
</tr>
<tr>
<td>Income from agriculture</td>
<td>1035</td>
<td>990</td>
<td>-.04</td>
<td>929</td>
<td>1091</td>
<td>.17</td>
</tr>
<tr>
<td>Income from business</td>
<td>332</td>
<td>351</td>
<td>.05</td>
<td>355</td>
<td>412</td>
<td>.16</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1693</td>
<td>1683</td>
<td>-.01</td>
<td>1650</td>
<td>1897</td>
<td>.15</td>
</tr>
</tbody>
</table>

Note: All values deflated to 1991Rmb.
In the initial period, households in the villages that received telephones between 1991 and 1993 had slightly higher incomes from wages and businesses and lower incomes from agriculture, than villages that were still without telephones in 1993. Overall, however, households living in villages that received telephones in 1993 had incomes that were slightly lower in 1991 (about 2 percent). But between 1991 and 1993, there were dramatic changes in income for households in villages where telephones were added. In particular, overall average household income grew 15 percent, with the largest increases in agricultural and business income. By contrast, households living in villages that did not add telephones experienced slightly lower incomes in 1993 compared with 1991. This pattern is consistent with the predictions regarding information and markets discussed earlier. As with the analysis of prices above, there is concern that villages that received telephones may be different in other ways that affect household income. However, statistical analysis that controls for differences (or changes) in numerous other factors, such as access to roads and transportation services, distance to nearest city, and a variety of other factors, yields similar conclusions (results available from the authors). We also make use of the longer series of data, and find that there was no differential trend in income between 1989 and 1991 for villages that would receive telephones in 1993, compared to those that would not receive them. Finally, we make use of a statistical technique that exploits the fact that telephones were in part “pseudorandomly” assigned across villages in these years, so we can eliminate concerns about reverse causality or differences between villages that received telephones and those that did not.11

Conclusion

The theory of information and market signals and the available evidence on the relationship between market integration and economic development suggest that greater access to ICTs, starting with basic communications infrastructure, could significantly improve the living standards of the world’s rural poor by enhancing the functioning of relevant markets. The only sustainable way to end deprivation is to enhance earning possibilities. Appropriately designed ICT interventions can help do exactly this, using the invisible hand of the market as a helping hand to the world’s poor. But it is important to emphasize that the greatest value of ICTs derives from the I and the C. Information and Communication. The kernel of our argument is presented in Figure 4, which shows how ICTs can create a “Digital Provide” that boosts incomes and ultimately leads to economic growth. ICTs have the ability to disseminate information to isolated, information-deprived locales. Those receiving this information (predominantly farmers and laborers), as both producers and consumers, will be, for the first time, able to participate in effective markets. The immediate consequence should be income gains for participants, and the ability to better spend their incomes. Over the long term, enhanced access to information should enable producers to significantly improve their practices. Such improvement lays the path to economic growth.

Of course, there are other barriers to market functioning, such as transportation infrastructure, and at times counterproductive government interventions (e.g., price controls and granting of monopolies). But, by emphasizing the importance of markets for helping the poor, market-oriented ICT interventions and applications help identify the costs of these barriers.

Our analysis has largely made use of references and examples using the telephone. More advanced technologies, such as Internet-enabled kiosks, could provide even greater benefits. For markets, a single mouse click could instantaneously and simultaneously reveal market prices in numerous locations, removing the need for contacting each directly, as with a telephone. Further, technologies such as Internet kiosks could provide numerous additional benefits. While our argument has been to show the role of markets for improving living standards, the poor need more than just markets. Health and education, for example, are important priorities. But it need not be not an “either-or” proposition, because ICTs can provide in these areas as well. For instance, many public health problems can be prevented or treated through information dissemination (e.g., through remote diagnostics), often at lower cost than treating the problem afterwards. There are equally valuable potential applications for education, including distance access to libraries, textbooks, and instruction. ICTs are the gift that keep on giving; once in place, they can be used to transmit information for a variety of uses, at little additional cost.

Recent advances have dramatically lowered the costs of providing access to a range of information technologies. These
advances, plus the perceived benefits they have brought to the developed world (though still difficult to quantify, and subject to debate), have fueled optimism for the potential of ICT to help the world’s poorest. The goal of this paper was to provide a theoretical argument for such optimism, as well as provide what empirical evidence can be mustered. Policymakers in developing countries face the daunting challenge of deciding how to allocate often extremely limited resources among many important alternative priorities. When selecting which set of projects will yield the greatest benefit for citizens, decision makers need information about the relative cost effectiveness of various proposed projects. Will better transportation infrastructure yield greater development outcomes than better access to telecommunications, or is a basic level of both necessary for significant progress? Unfortunately, not enough careful analysis of ICTs in developing countries has yet been done to answer these pressing policy questions. While there have been numerous studies of the benefits and cost effectiveness of other infrastructure investment projects, such as road building or dam construction, similar studies on ICTs are only now just beginning. What is clear, however, is that the potential for ICTs to alleviate poverty and promote economic growth in developing countries justifies greater attention and systematic analysis.

References

Endnotes

1 Meyer et al. (1992) study the role of historical prices in coordinating decentralized allocation decisions.

2 Isard (1977) asserts that "in reality the Law of One Price is flagrantly and systematically violated by empirical data." Of course, there are other frictions that lead to divergence from the Law of One Price, including the cost of buyers' search; the fact that knowledge quickly becomes obsolete as supply and demand are constantly in flux; the entrance of new, inexperienced buyers and sellers into the market; the costs to dealers of ascertaining rivals' asking prices; and various indivisibilities (Stigler 1961). Engel and Rogers (1996) studied deviations from the Law of One Price for U.S. and Canadian cities. They found that "the distance between cities explains a significant amount of the variation in the prices of similar goods in different cities," and note "the failure of prices of similar goods to equalize between sites is a sign that the markets are not completely integrated" (Engel and Rogers 1996:1113).

3 Many Peruvian households do have access to public telephones, however, so reported rates based on residential telephones no doubt underestimate access to services (Torero 2000:15).

4 One outlying market, closer in proximity to the central market and characterized by "high intensity of trading activity," seemed to be well integrated with the central market in the sense that central market price history was more important than local price history in explaining price changes. In the second, geographically further outlying market, "local market history was the predominant determinant of prices" (Badiane and Shively 1998:429).

5 The price transmission mechanism also affects the variability of prices across regions. This may occur because high prices entice inventory holders to sell, leaving less of the good available to cushion lower changes in demand. Lower inventories then produce higher future price variance. In contrast, lower prices lead to higher inventories and lower future price variance. Badiane and Shively (1998:430) identify such an effect in Ghana: "a 1 cedi decline in the [central market] maize price led to a 0.5 cedi reduction in price variance in the relatively well-integrated [outlying] market, but only a 0.1 cedi reduction in price variance in the relatively isolated [other outlying] market."

6 This survey was a panel study conducted in eight provinces in China between 1989 and 1997 by the Carolina Population Center at the University of North Carolina at Chapel Hill, the Institute of Nutrition and Food Hygiene and the Chinese Academy of Preventive Medicine. The data and additional information can be found at <http://www.cpc.unc.edu/projects/china/home.html>.
Areas A and B in Figure 1 illustrate the loss to a supplier when the alternative to ignorance is precise knowledge of the prices PL and PH, assuming the supplier is risk neutral. The loss in expected value of $(A+B)/2$ is itself an expectation for a supplier with only imperfect knowledge of future prices—as is usually the case even for well-functioning markets in developed economies.

There has also been great optimism over the prospect of developing country craftsmen selling their quality wares directly to developed country consumers. However, such an approach, even if successful, probably would not account for more than a small share of total of production by the rural poor in developing countries.

Imai (2001) estimates the total resource transfer from urban and rural households to the Chinese government from price and wage controls to have amounted to 10.4 percent of GDP during the fifteen-year period before 1979.

Statistics from a telegraph company for one month in 1856 confirm the salience of market information signals via the new communications technology: “Of the 20,400 messages transmitted, at least 57 percent were unmistakably commercial in nature (‘messages to buy and sell goods,’ ‘instructions to pay money and notes,’ ‘reports of markets,’ ‘messages respecting freight and shipping,’ and ‘general mercantile matters’)” (Du Boff 1980:470).

In particular, we undertake a limited instrumental variables strategy; under such a strategy, if we can find a factor that predicts whether a village receives a telephone, but is uncorrelated with changes in income, or other factors that affect income, then this factor can be thought of in some way as pseudorandomly allocating phones across villages (as far as income is concerned). If we can statistically exploit this pseudorandomization in telephone allocation, we can in effect purge the results of unobservable factors, and overcome the problem of reverse causality, because we are only looking at differences in receipt of telephones that is uncorrelated with income changes. As much of the spread of the telephone in China during this time was based on fixed-line technology, the spread was generally radiating out from major cities; thus, the distance to the nearest city, for which we have data in the CHNS, is a good predictor of whether the village received a telephone during the survey, but in general should be uncorrelated with changes in income over this time. Results from this limited strategy yield similar results to those shown in the main text; again, this allays concerns about reverse causality or differences between villages that receive telephones and those that do not receive them.

For one example, see the Sustainable Access in Rural India (SARI) project, which the authors are involved with, at <http://edevelopment.media.mit.edu/SARI/mainsari.html>.

* We thank Geoffrey Kirkman and Mridul Chowdhury for useful comments.