Alternative Energy/EFRC Technology Focus

From Commons Based Research
Jump to navigation Jump to search
    • Partial List**

Molecularly Assembled Material Architectures for Solar Energy Production, Storage, and Carbon Capture

Vidvuds Ozolins, Director
University of California, Los Angeles

Objective: To acquire a fundamental understanding and control of nanoscale material architectures for conversion of solar energy to electricity, electrical energy storage, and separating/capturing greenhouse gases.

The objective of this EFRC will be achieved through a combination of theoretical modeling, computer simulation, materials synthesis, and experimental measurements on materials that enhance performance and are economically viable on a large scale. The EFRC plans collaborations with scientists at the National Renewable Energy Laboratory, Eastern Washington University, the University of Kansas, and the University of California-Davis.

Argonne-Northwestern Solar Energy Research (ANSER) Center

Michael R. Wasielewski, Director
Northwestern University

Objective: To revolutionize the design, synthesis, and control of molecules, materials, and processes in order to dramatically improve conversion of sunlight into electricity and fuels.

The research in this EFRC addresses the basic solar energy conversion steps of charge photogeneration, separation, recombination, as well as charge and energy transfer among molecules, across interfaces, and through nanostructured architectures. The center will focus on the science needed to create integrated molecular systems for artificial photosynthesis, to control interfacial processes critical in organic photovoltaics, and to enable three-dimensional nanostructured materials organization for solar fuels and hybrid photovoltaics. The EFRC includes planned collaborations with scientists at Argonne National Laboratory, where the Advanced Photon Source and the Center for Nanophase Materials will play an important role, as well as the University of Chicago, the University of Illinois, and Yale University.

Science of Precision Multifunctional Nanostructures for Electrical Energy Storage

Gary Rubloff, Director
University of Maryland

Objective: To understand and build nano-structured electrode components as the foundation for new electrical energy storage technologies.

Nano-structured electrodes offer vastly greater surface area and smaller path lengths for motion of electrons and ions, increasing the rate at which charges can be moved and stored, leading to much increased power and energy density and faster charging. By using materials in precisely built nanostructures, energy storage devices will hold more energy, will charge or deliver electricity faster, and remain stable for longer lifetimes, while reducing space and weight. This EFRC includes the planned collaborations with scientists from the University of Florida, Yale University, the University of California, Irvine, Sandia National Laboratories, and Los Alamos National Laboratory, including the Center for Integrated Nanotechnologies at Los Alamos and Sandia.

Nanostructured Interfaces for Energy Generation, Conversion, and Storage

Hector Abruna, Director
Cornell University

Objective: To understand and control the nature, structure, and dynamics of reactions at electrodes in fuel cells, batteries, solar photovolataics, and catalysts.

This EFRC will concentrate on the overriding theme of understanding the nature, structure, and dynamics of interfaces on energy generation, conversion and storage. Reactions at electrodes in fuel cells, charging and discharging reactions in lithium ion batteries, charge generation in photovoltaic and photo-electrochemical devices, and numerous catalytic systems all depend critically on the nature and structure of interfaces between materials and different states of matter. The center will integrate the synthesis of model systems with atomic level control, and explore electronically conducting polymers in contact with metal electrodes. In addition, fundamental theory and computations, combined with the development of tools that will provide in-situ spatiotemporal characterization, will differentiate the fundamental properties of the best materials over the range of intended operating conditions. These investigations will dramatically accelerate the development of energy generation, conversion and storage technologies and thus, the evolution of the entire energy landscape. This EFRC includes a planned collaboration with scientists at Lawrence Berkeley National Laboratory.

Center for Electrocatalysis, Transport Phenomena and Materials for Innovative

Energy Storage
Grigorii Soloveichik, Director
General Electric Global Research

Objective: To explore the fundamental chemistry needed for an entirely new approach to energy storage that combines the best properties of a fuel cell and a flow battery.

The focus of this EFRC is to explore the fundamental chemistry of electrocatalysis and ionic transport required for an entirely new approach to energy storage through the use of an organic carrier as reversible 'virtual hydrogen storage'. This fundamental knowledge base will enable the technology development of an innovative high-density energy storage and conversion system combining the best properties of a fuel cell and a flow battery for stationary and mobile applications. The EFRC includes planned collaborations with scientists at Yale University, Stanford University and Lawrence Berkeley National Laboratory.

Northeastern Chemical Energy Storage Center (NOCESC)

Clare P. Grey, Director
State University of New York, Stony Brook

Objective: To understand how fundamental chemical reactions occur at electrodes and to use that knowledge to design new chemical energy storage systems.

This EFRC seeks a fundamental understanding of how electrode reactions occur, and how they can be tailored by appropriate electrode design, so that critical structural and physical properties that are vital to improving battery performance can be identified and used to design new battery systems. The NOCESC will also develop advanced in-situ diagnostic methods for chemical energy storage systems that combine multiple experimental approaches, such as spectroscopy and imaging. The EFRC includes planned collaboration with scientists from Rutgers University, SUNY-Binghamton, the Massachusetts Institute of Technology, Lawrence Berkeley National Laboratory, the University of Michigan, Argonne National Laboratory including the Advanced Photon Source, Brookhaven National Laboratory including the National Synchrotron Light Source and the Center for Functional Nanomaterials, and the University of Florida.

Navigation

Back to Research Notes on EFRCs
Back to EFRC Final Paper
Back to ICP Reports and Working Papers
Back to ICP Sectors
Back to Main Page